

Analyse comparée de services écosystémiques directement ou indirectement liés aux flux azotés des systèmes avec légumineuses à graines

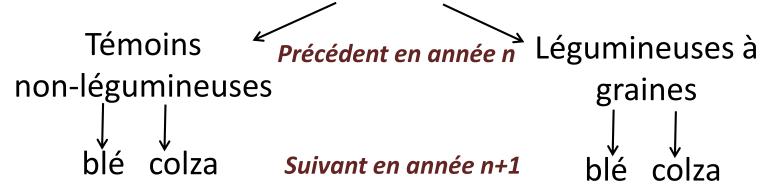
Finalité recherchée ?

Mieux caractériser les effets pluriannuels des légumineuses à graines au sein des agrosystèmes français et mieux comprendre les facteurs de leur variabilité

A terme, faciliter leur prise en compte dans les stratégies de production de protéines végétales avec des systèmes à bas intrants

Essais Terres Inovia

Essais d'autres partenaires


Métaanalyses Données de réseaux d'agriculteurs

Objectifs de l'expérimentation Terres Inovia

1. Comparer sur un même lieu

2. Comparer selon plusieurs situations

<u>Lieu x Année</u>

- (i) Quantification de l'effet, a minima en valeurs relatives
- (ii) Exploration de la Variabilité de l'effet, et des facteurs explicatifs majeurs

(en cumulant, à terme, avec le plus grand nombre de données)

Matériels et méthodes

Des couples 'précédent-suivant'

(X 4 blocs)

Année n	4 modalit	2 témoins Non-leg		
Berry (2016, 2017)	Pois h, Féverole h, Poish+Blé, Lentille		Colza, Blé	
Grignon (2017, 2018)	Pois h, Poish+Blé, Féverole p, Pois p		Colza, Blé	
Année n+1 Berry (2017, 2018) Grignon (2018, 2019)	Blé	Colza	Blé	Colza
	0N N1	0N N2	0N N1	ON N2

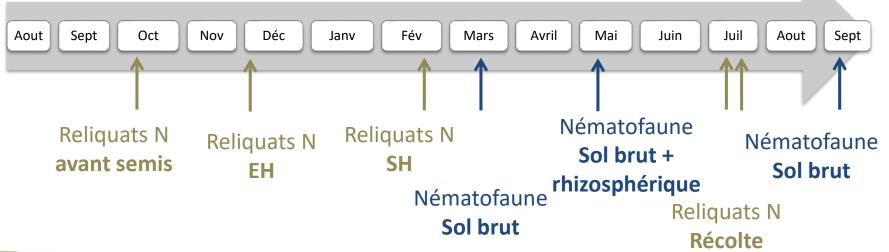
Sur 2 sites pédoclimatiques avec 2 séries climatiques pour chacun

Berry (Indre, 36) Récoltes 2016 et 2017 Récoltes 2017 et 2018 Sols argilo-calcaires superficiels Matière organique à 3,1%

Grignon (Yvelines, 78)

Récoltes 2017 et 2018 Récoltes 2018 et 2019

Sols limoneux profonds MO entre 1,3 et 1,9%


Prélèvements et variables étudiées

Exemple Berry 2016

+ Mesures ponctuelles d'émissions de N₂O tout au long de la campagne Biomasse vert et sèche Teneur en N Floraisons

Biomasse vert et sèche, graines et pailles, Rdt, Densité, PMG, teneur en protéine des grains, analyses isotopiques 15N (leg)

Communication

flash de C

Chauvin

1ers résultats des essais analytiques « effets LEG »

2015-2018 Berry et 2016-2019 Grignon

(expérimentation et analyses en cours)

ProLeg (PSDR-IdF, 2016-2019)

Entrée d'azote symbiotique (hors intrants) pour le système de culture

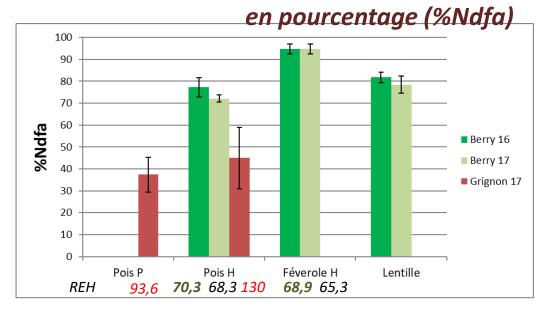
Fixation symbiotique selon espèces

et situations

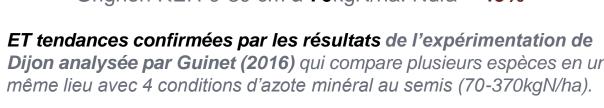
Azote issu de la fixation pour 5 modalités LAG sur 3 situations (site x année)

(suite à enrichissement du sol en 15N)

- ✓ Variabilité interspécifique
- ✓ Pour une espèce donnée :


Indépendant de l'année Facteur déterminant

= Teneur en azote minéral du sol disponible pour la légumineuse lors de son cycle de culture


Cas du Pois d'hiver

Berry REH *0-30 cm* à **30**kgN/ha : Ndfa = **77%** Grignon REH *0-30 cm* à **70**kgN/ha: Ndfa = **45%**

ET tendances confirmées par les résultats de l'expérimentation de Dijon analysée par Guinet (2016) qui compare plusieurs espèces en un même lieu avec 4 conditions d'azote minéral au semis (70-370kgN/ha).

fixation symbiotique

300

Azote minéral dans la couche labourée au semis

(kg N/ ha)

Cas du pois

Voisin 2002

Alimente la révision des classes de référence par espèce de légumineuse %Ndfa

- Trèfle, Luzerne, autres fourragères

- Féverole, Lupin

- Soja

- Soja

- Pois, Pois-chiche
- Lentille

- Lentille

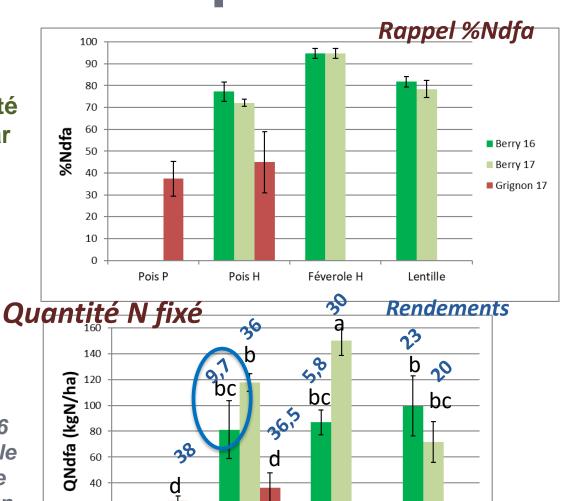
- Haricot	40	%

%Ndfa	Espèces
80-95	Trèfle, luzerne, prairie
70-80	Féverole, lupin
60-70	Pois, p-chiche, lentille, soja
40	Haricot

RAPPEL: Références antérieures (2015)

Schneider et Huyghe Quae 2015

Quantité fixée selon espèces et


situations

 ✓ Pour une espèce: la quantité est en partie déterminée par le %Ndfa lié au site

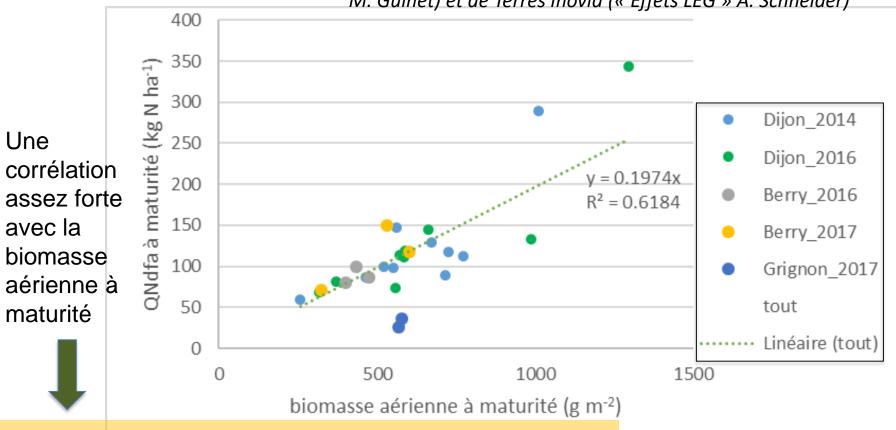
Pois h: faible pour Grignon forte pour Berry

 ✓ En un lieu: la quantité variable selon la performance de la LAG

2016 et 2017: quantités moindres par espèces en 2016 car les maladies de fin de cycle ont anéanti les rendements de Pois H et Féverole H malgré un bon déroulement de croissance (contrairement à la lentille)

Féverole H

Lentille


20

Pois P

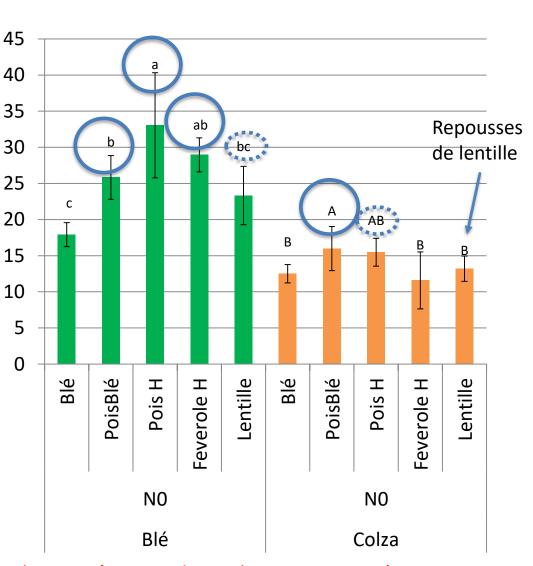
Pois H

Quantité fixée sur un ensemble de situations

Sources : données expérimentales d'essais de l'INRA (« 10 LEG » M. Guinet) et de Terres Inovia (« Effets LEG » A. Schneider)

Un indicateur à confirmer : plus facile d'accès pour les estimations en situations agricoles

A décliner par espèce et contexte de la campagne

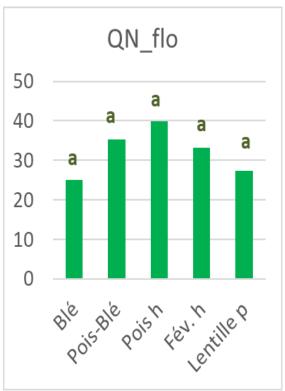

Amélioration des performances du suivant

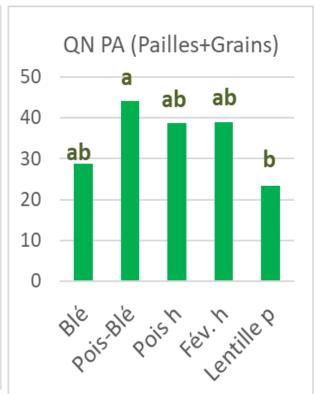
Service « variation du rendement du suivant »

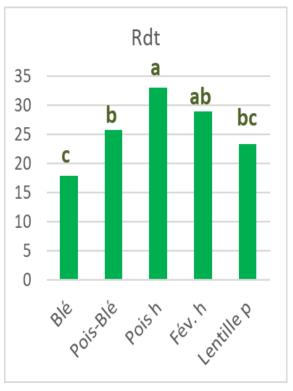
Rendements du blé et colza (Berry 2017) non fertilisés en fonction des différents précédents culturaux de 2016 (en q/ha)

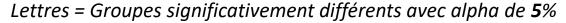
- → Blé ON : les effets du pois, de la féverole et de l'association pois-blé (composé surtout de pois) se différencient de ceux du blé
- → Colza ON: l'effet de l'association pois-blé se différencie de ceux du blé, de la féverole et de la lentille

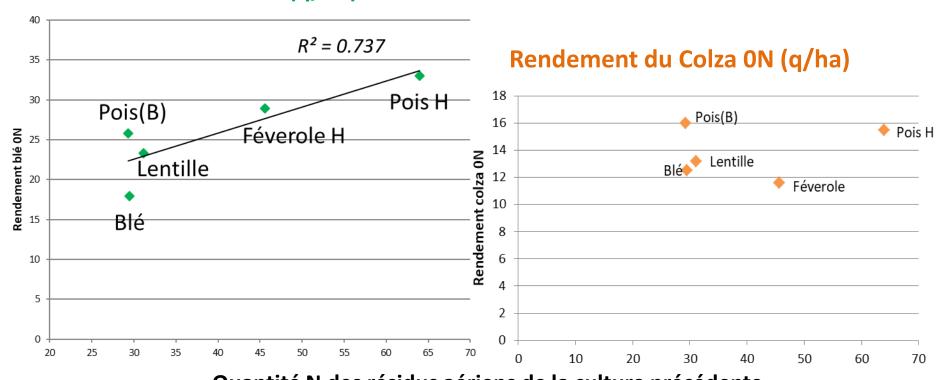
Résultats à confirmer par la suite (ici 1 seul couple « prec-suiv »)


Facteurs de l'effet précédent ? Azote absorbé


Berry 2017 – Blé ON


en fonction des différents précédents culturaux de 2016 Les écarts de quantité N absorbé selon le précédent <u>n'expliquent pas entièrement</u> les écarts de rendement du Blé à 0N

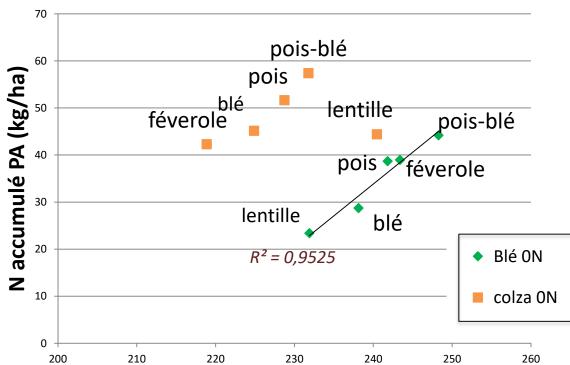

Quantité N absorbé (en kg/ha)



Facteurs explicatifs? Pailles du précédent

Berry 2017

Rendement du Blé ON (q/ha)


Quantité N des résidus aériens de la culture précédente

Facteurs explicatifs? N fourni par le sol

Berry 2017

Azote accumulé dans les cultures à la récolte en fonction du type de précédent et de l'azote disponible dans le sol (calculé théoriquement)

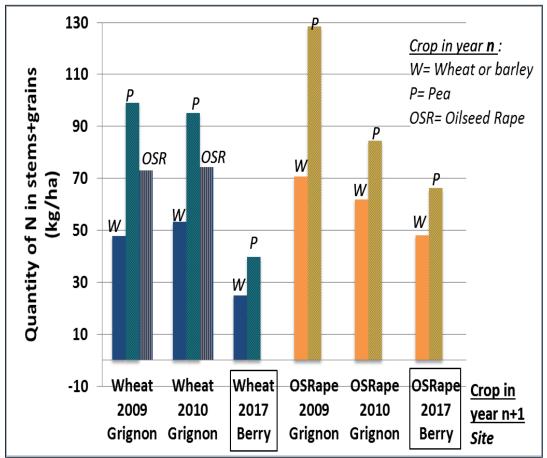
En non fertilisé:

Relation linéaire pour le blé, et pour le colza hormis avec le précédent lentille dont les fortes repousses ont gêné la levée du colza

A confirmer avec des simulations sous STICS en cours

N disponible du sol (kg/ha)

= RSH + Mh(sortie hiver)



Renforcement des références précédentes

Effet sur la composante du rendement « azote absorbé »

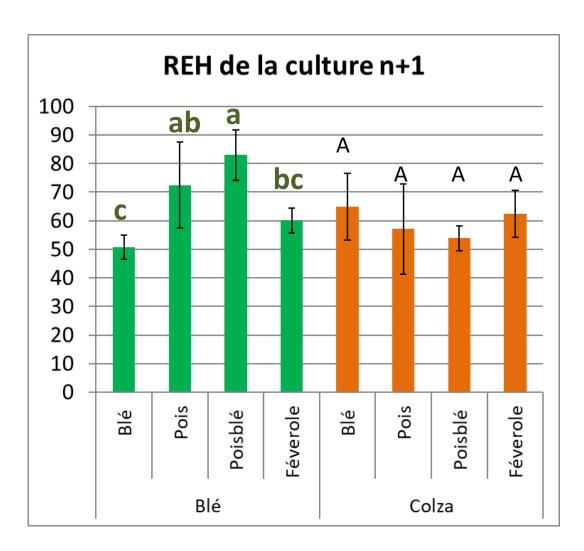
Après la culture de pois d'hiver, la quantité d'azote absorbé par la culture (blé ou colza sans fertilisation) est significativement plus élevée par rapport à d'autres précédents (blé ou colza), toutes choses étant égales par ailleurs

Compilation données LEG Berry 2017 et données d'essais précédents à Grignon en 2009 et 2010 (Jeuffroy et al 2015)

Convergence des gains selon le précédent du blé / autres publications

... malgré l'année atypique de **2016** (cycle de LAG d'hiver très correct jusqu'à floraison puis attaques maladies et rendements catastrophiques)

Comparaison avec une Méta-analyse (Cernay 2016) avec 33 articles publiés dans 6 régions du monde et comprenant 16 espèces de LAG


	Précédent cultural					
	Pois		Féverole			
Culture suivante : Blé	Non fertilisé	Fertilisation suboptimale (dose)	Non fertilisé	Fertilisation suboptimale (dose)		
	Berry17: +45%	Berry17: +23% (77kgN/ha)	Berry17: +38%	Berry17 : +24% (83kgN/ha)		
	MétaAnalyse : +35%	MétaAnalyse : +19% (80kgN/ha)	MétaAnalyse : +37%	MétaAnalyse : +26% (80kgN/ha)		

Risque de fuites en nitrate

Risques de lixiviation l'hiver suivant

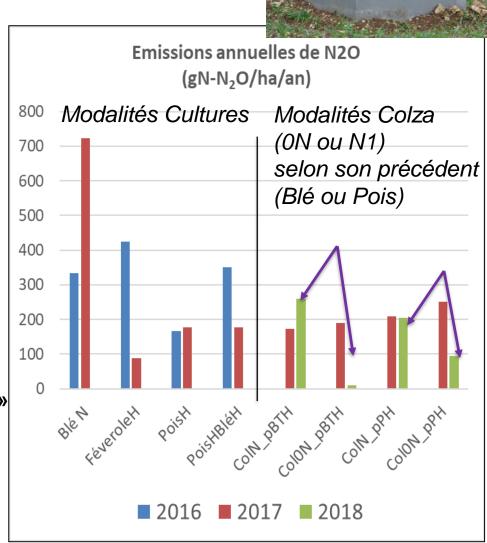
Blé: indicateur de risque REH plus élevé avec les précédents «pois»

Colza: pas de différence significative selon le précédent cultural

22

Emissions du protoxyde d'azote N₂O

principal GES des grandes cultures



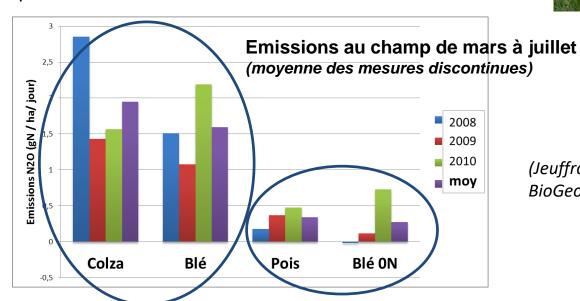
Emissions N20 sur 3 années

Berry 2016, 2017, 2018

Mesures en chambres manuelles et interpolation à l'année

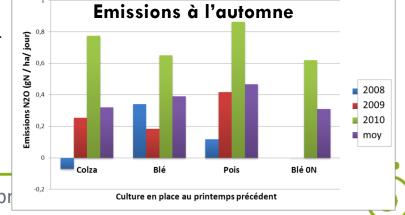
- √ Faible flux sur ces sols
- ✓ Effets cultures « grillées » en 2016 Avril Mai juin : pluies+maladies cult hiver !! Exportations très faibles des protéag en 2016
- ✓ Effet « Apport engrais azoté » N sur blé en 2017 Dose N2 sur colza/ Co 0N en 2018
- ✓ Pas d'effet visible « précédent pois » sur Colza en 2017 et 2018

Emissions N20 : Résultats antérieurs


Mesures en expérimentation au champ à Grignon (78) pendant 3 ans

Un effet fort de la fertilisation N de la culture en place sur les émissions printanières

Le pois se comporte comme le blé non fertilisé



(Jeuffroy et al., 2013; BioGeoSciences)

Pas d'effet significatif du précédent cultural sur les **émissions à l'automne**

Toutes :<0,8gN/ha/j

Perspectives

- 1. Analyses des résultats complémentaires de l'expérimentation de Terres Inovia
 - 1 série de « précédents »Grignon 2018
 - 2 séries de couples « précédents-suivants »
 Berry 2017-2018
 Grignon 2017-2018
 - 1 série à venir de couples « précédents-suivants » Grignon 2018-2019

Perspectives

2. Cumuler les données pour une analyse des facteurs majeurs de variation des services liés aux LAG

Plateforme INRA avec 10 lég. avant blé

Méta-Analyse 2015

Suivis flux N sur 15 parcelles agricoles ANR-LEGITIMES avec 10 lég avant du blé

Extraction de LAG dans les essais SdC

Données d'agriculteurs

Analyse des principaux facteurs explicatifs (voire modèles prédictifs) pour les valeurs des bénéfices et dis-services

Référentiel national sur les services des LAG

Règles de décisions pour favoriser l'expression des SE en situations agricoles

Conseil stratégique

27

Merci

aux collègues de Terres Inovia (expé et données)

Jean-Claude Lacotte et David Poisson Florian Nourry et Grégory Nourrisson Léna Oddos, AS Perrin, Cécile Le Gall Dominique Wagner et Célia Pontet

aux collègues de la recherche

Elise Pelzer, Marie-Hélène Jeuffroy (INRA Agronomie)
Maé Guinet, Anne-Sophie Voisin (INRA Agroécologie)
Guénaëlle Hellou (ESA Angers LEVA)

... Et merci à vous pour votre attention !

