

La génétique au service du goût...

...Caractérisation de mutants pour l'accumulation de saponines et l'activité lipoxygénase dans les graines de pois.

Vanessa VERNOUD

Le goût désagréable des légumineuses

 Le goût désagréable des graines de légumineuses (off-flavour) restreint leur utilisation en tant qu'ingrédients pour la fabrication de produits alimentaires élaborés.

Amertume Saponines

Odeur /note verte ("green, beany taste")

- Composés organiques volatiles (cov) provenant de l'oxydation des acides gras insaturés par des lipoxygénases
- Méthoxypyrazines
- Quelles solutions? traitements physico-chimiques, extraction sélective par solvant, masquage...

Exploiter la variabilité génétique LEG'UP pour améliorer le goût

Projet FUI LEG'UP:

le pois et la féverole comme source de protéines végétales pour l'alimentation humaine

1 Exploiter la variabilité génétique naturelle pour la teneur en saponines et l'activité lipoxygenase des graines.

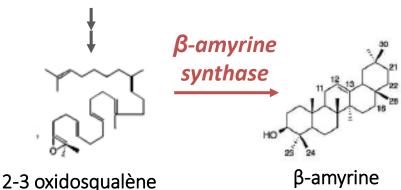
> Phénotypage d'environ 100 génotypes par espèce

Féverole

Pois

2 Exploiter la variabilité génétique induite: recherche d'allèles mutants pour l'accumulation de saponines ou pour l'activité lipoxygénase

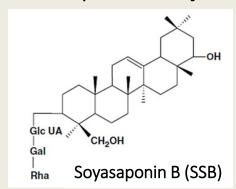
Utilisation de la population de **mutants TILLING** de pois (Dalmais et al., Genome Biol 2008)

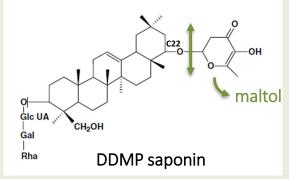

TILLING = Targeting Induced Local Lesions In Genomes

Les saponines de pois, des triterpènes glycosylés au goût amer

Voie du mévalonate

Oxydations (Cytochromes P450)

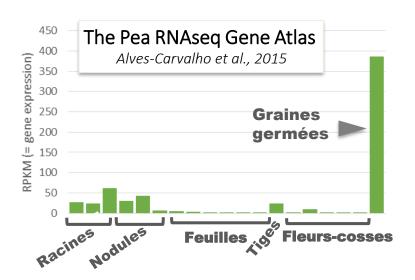


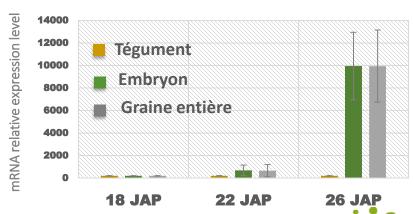

Triterpènes glycosylés = SAPONINES

Glycosylations (UGT-glycosyltransferases)

- → Forme DDMP majoritaire
- → Conversion DDMP → SSB sous l'action de la chaleur
- → Plus forte amertume de la forme DDMP (Heng et al., 2005)

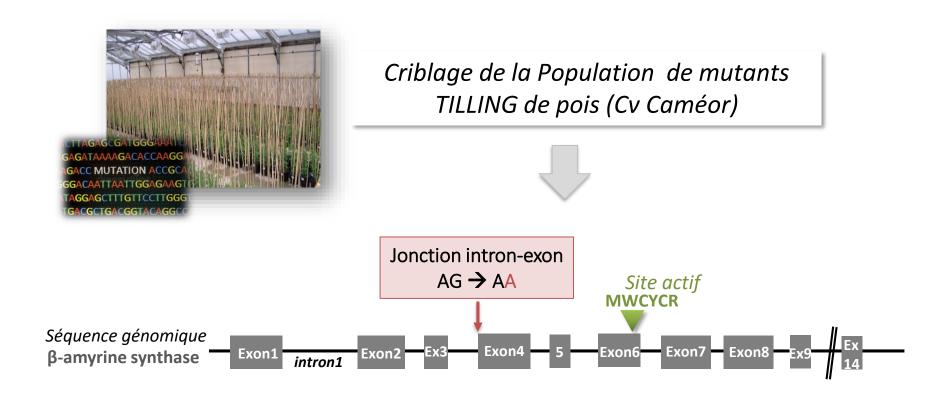
Saponines majoritaires des graines de pois


DDMP = 2,3-dyhydro-2,5-dihydroxy-6-methym-4H-pyran-4-one

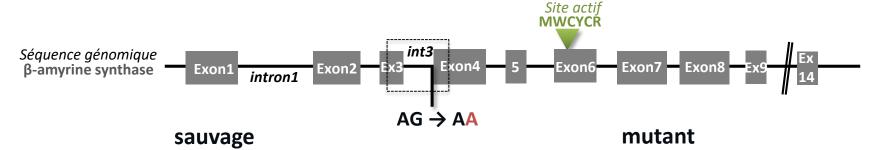

Caractérisation d'un gène codant pour la β-amyrine synthase chez le pois

Une séquence de **β-amyrine synthase de pois** publiée (*PsPSY*, Morita et *al.*, FEBS J.2004) dont l'activité enzymatique a été confirmée.

Le gène *PsPSY* est induit lors de la maturation de la graine et s'exprime spécifiquement dans l'embryon



Recherche de mutants TILLING pour le gène PsPSY codant une β-amyrine synthase



Effet sur la maturation de l'ARNm?

L'allèle mutant code pour une protéine tronquée et inactive

ATTACTGGACATCTTGATTCGGTGTTCCCACCAGAGCATCGC
AAAGAGATTCTTCGTTATATATATTGCCACCAG
ATCATTCAATCTAGTCGAACCATAGAATTTGAGGGTTCTTGG
TGTTGATTATGAACAATTTGTATTAACCTTATTGTGGTTTCA
TTTGAAGAACGAAGATGGAGGGTGGGGGCTTCACATTGAGGG
TCATAGCACCATGTTTTGTACTGCA

Épissage de l'intron 3

ATTACTGGACATCTTGATTCGGTGTTCCCACCAGAGCATCGC AAAGAGATTCTTCGTTATATATTTGCCACCAGAACGAAGAT GGAGGGTGGGGGCTTCACATTGAGGGTCATAGCACCATGTTT TGTACTGCA

Protéine sauvage

ATTACTGGACATCTTGATTCGGTGTTCCCACCAGAGCATCGC

AAAGAGATTCTTCGTTATATATTTGCCACCAG

ATCATTCAATCTAGTCGAACCATAGAATTTGAGGGTTCTTGG

TGTTGATTATGAACAATTTGTATTAACCTTATTGTGGTTTCA

TTTGAAAAACGAAC

ATGGAGGGTGGGGGCTTCACATTGAGGG

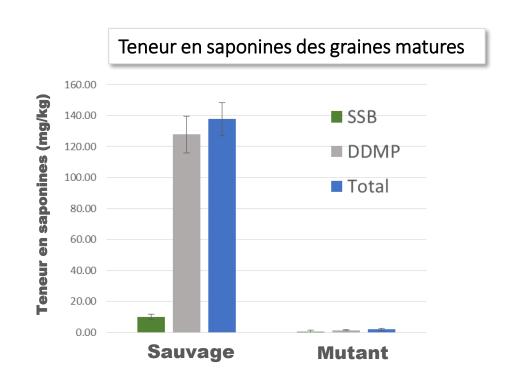
TCATAGCACCATGTTTTGTACTGCA

Épissage de l'intron 3 et de 7bp de l'exon 4

ATTACTGGACATCTTGATTCGGTGTTCCCACCAGAGCATCGC
AAAGAGATTCTTCGTTATATATTTGCCACCAGATGGAGGGT
GGGGGCTTCACATTGAGGGTCATAGCACCATGTTTTGTACTG
CA

Protéine mutante prédite

Le mutant *psy* n'accumule plus de saponines dans les graines matures

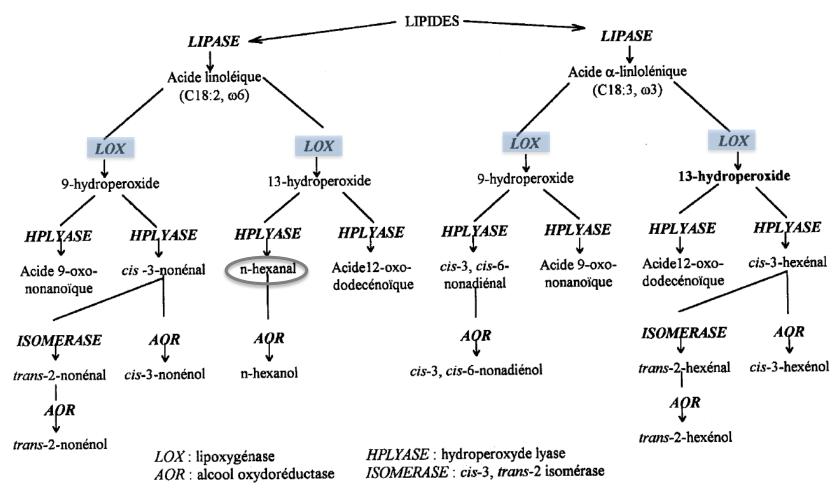

> Extraction

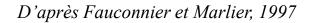
Méthanol/eau Temps court et température ambiante (préservation de la forme DDMP)

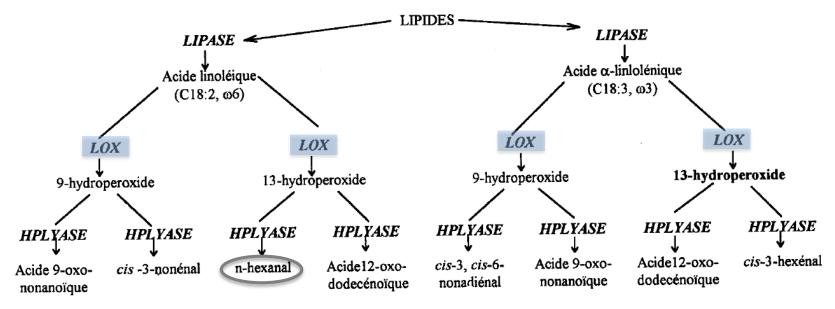
Dosage par HPLC

Étalonnage avec la soyasaponine B (SSB) commerciale

Quantification de la forme DDMP par rapport à la soyasaponine B en tenant compte du rapport des coefficients d'extinction (Hu et al., 2002)

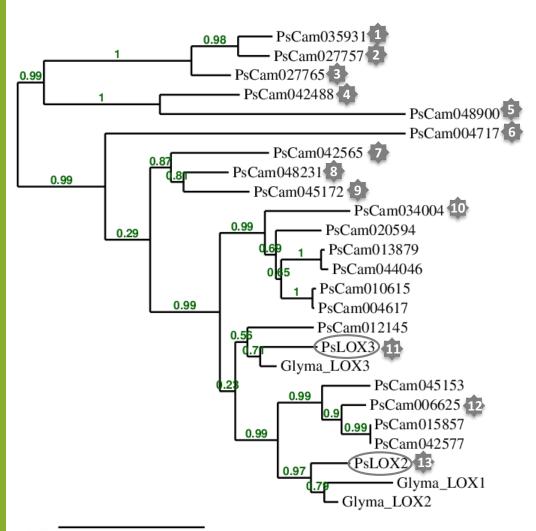



- Multiplication des plantes en cours
- → Graines pour analyses sensorielles = amertume diminuée ?
- Analyse phénotypique détaillée du mutant.


Les lipoxygénases, source de COV dans les graines

Les lipoxygénases, source de COV dans les graines

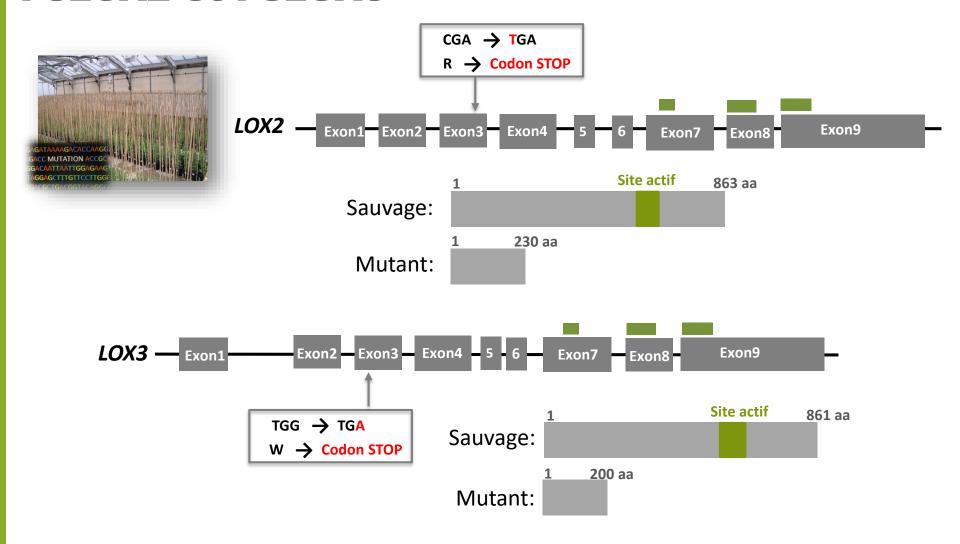
5 LOX sont synthétisées dans la graine de pois dont 2 majeures, LOX2 et LOX3 ¹


Nom	pH optimal ²	Ratio 13HPO / 9HPO ²	Substrat ²			
PsLOX2	5.8- 6.4	7:1	C18:2 C18:3			
PsLOX3	5.6 - 6.5	1:2	C18:2			
85% d'identité entre LOX2 et LOX3						

¹Domoney et al., 1990 ²Hughes et al., 1998

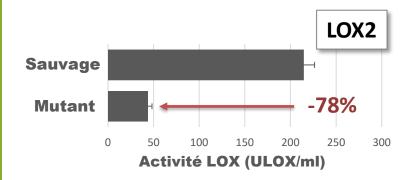
Expression des lipoxygénases lors du développement de la graine de pois

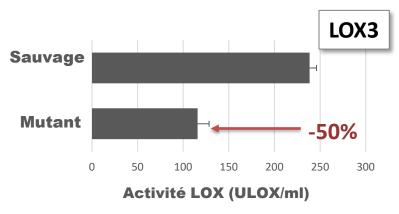
		Maturation de la graine					
	8 JAP	12 JAP	16 JAP	19 JAP	23 JAP	29 JAP	
1	30	323	788	3947	7311	4167	
2	1942	921	102	221	448	114	
3	640	565	508	807	1464	366	
4	1930	823	346	261	209	395	
5	402	95	58	179	228	609	
6	9	15	3	16	9	7	
7	53	618	399	23	4	7	
8	87	1083	373	271	208	38	
9	1006	1331	68	97	138	525	
10	0	1	4	1836	1488	3	
11	52	70	13715	202404	248682	9996	
12	216	11	5	8	9	3	
13	39	61	16721	130260	175940	8001	

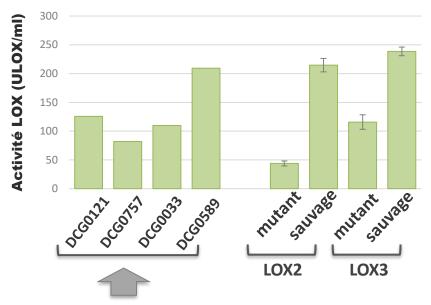

Données de RNA-seq (lectures normalisées)

JAP = Jours Après Pollinisation

0.3


Recherche de mutants TILLING pour les gènes PsLOX2 et PsLOX3





Les mutants *lox2* et *lox3* montrent une réduction de l'activité LOX dans les graines

5 génotypes avec la plus faible activité

- Croisement lox2 x lox3 en cours Activité LOX nulle?
- Production COV (hexanal, ..) affectée?

100 écotypes analysés pour leur activité LOX dans les graines matures

Remerciements

Julie Marais Ludivine Lebeigle

Myriam Sanchez Brigitte Darchy Christine Le Signor

Anthony Klein Jean-Bernard Magnin-Robert Gérard Duc

Richard Thompson

UMR1347 Agroécologie, INRA, Dijon

Marie-Aleth Lacaille-Dubois

Laboratoire de Pharmacognosie, Faculté de Pharmacie de Dijon

Bonastre Oliete Remi Saurel

UMR Procédés Alimentaires et Microbiologiques Agro-Sup Dijon, Université de Bourgogne

